Injective resolutions of some regular rings
نویسندگان
چکیده
منابع مشابه
Support and Injective Resolutions of Complexes over Commutative Rings
Examples are given to show that the support of a complex of modules over a commutative noetherian ring may not be read off the minimal semi-injective resolution of the complex. These also give examples of semiinjective complexes whose localization need not be homotopically injective. Let R be a commutative noetherian ring. Recall that the support of a finitely generated R-module M is the set of...
متن کاملCopure injective resolutions, flat resolvents and dimensions
In this paper, we show the existence of copure injective preenvelopes over noetherian rings and copure flat preenvelopes over commutative artinian rings. We use this to characterize n-Gorenstein rings. As a consequence, if the full subcategory of strongly copure injective (respectively flat) modules over a left and right noetherian ring R has cokernels (respectively kernels), then R is 2-Gorens...
متن کاملAlgorithms for graded injective resolutions and local cohomology over semigroup rings
Let Q be an affine semigroup generating Z, and fix a finitely generated Z -graded module M over the semigroup algebra k[Q] for a field k. We provide an algorithm to compute a minimal Z-graded injective resolution of M up to any desired cohomological degree. As an application, we derive an algorithm computing the local cohomology modulesH I(M) supported on any monomial (that is, Z -graded) ideal...
متن کاملCommuting $pi$-regular rings
R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.
متن کاملInjective Modules and Fp-injective Modules over Valuation Rings
It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1999
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(99)00049-3